Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Genet ; 142(12): 1747-1754, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957369

RESUMO

Machado-Joseph disease (MJD/SCA3) is the most frequent dominant ataxia worldwide. It is caused by a (CAG)n expansion. MJD has two major ancestral backgrounds: the Machado lineage, found mainly in Portuguese families; and the Joseph lineage, present in all five continents, probably originating in Asia. MJD has been described in a few African and African-American families, but here we report the first diagnosed in Sudan to our knowledge. The proband presented with gait ataxia at age 24; followed by muscle cramps and spasticity, and dysarthria, by age 26; he was wheel-chair bound at 29 years of age. His brother had gait problems from age 20 years and, by age 21, lost the ability to run, showed dysarthria and muscle cramps. To assess the mutational origin of this family, we genotyped 30 SNPs and 7 STRs flanking the ATXN3_CAG repeat in three siblings and the non-transmitting father. We compared the MJD haplotype segregating in the family with our cohort of MJD families from diverse populations. Unlike all other known families of African origin, the Machado lineage was observed in Sudan, being shared with 86 Portuguese, 2 Spanish and 2 North-American families. The STR-based haplotype of Sudanese patients, however, was distinct, being four steps (2 STR mutations and 2 recombinations) away from the founder haplotype shared by 47 families, all of Portuguese extraction. Based on the phylogenetic network constructed with all MJD families of the Machado lineage, we estimated a common ancestry at 3211 ± 693 years ago.


Assuntos
Doença de Machado-Joseph , Masculino , Humanos , Adulto Jovem , Adulto , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/diagnóstico , Portugal , Cãibra Muscular , Disartria , Filogenia , África Oriental
3.
Nephrol Dial Transplant ; 38(6): 1408-1420, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36520078

RESUMO

BACKGROUND: The water channels aquaporin-1 (AQP1) and AQP7 are abundantly expressed in the peritoneal membrane. While AQP1 facilitates water transport during peritoneal dialysis (PD), the role of AQP7, which mediates glycerol transport during fasting, remains unknown. METHODS: We investigated the distribution of AQP7 and AQP1 and used a mouse model of PD to investigate the role of AQP7 in the peritoneal membrane at baseline and after fasting. RESULTS: Single nucleus RNA-sequencing revealed that AQP7 was mostly detected in mature adipocytes, whereas AQP1 was essentially expressed in endothelial cells. Fasting induced significant decreases in whole body fat, plasma glucose, insulin and triglycerides, as well as higher plasma glycerol and corticosterone levels in mice, paralleled by major decreases in adipocyte size and levels of fatty acid synthase and leptin, and increased levels of hormone-sensitive lipase mRNAs in the peritoneum. Mechanistically, fasting upregulated the expression of AQP1 and AQP7 in the peritoneum, with increased ultrafiltration but no change in small solute transport. Studies based on Aqp1 and Aqp7 knockout mice and RU-486 inhibition demonstrated that the glucocorticoid induction of AQP1 mediates the increase in ultrafiltration whereas AQP7 regulates the size of adipocytes in the peritoneum. CONCLUSIONS: Fasting induces a coordinated regulation of lipolytic and lipogenic factors and aqua(glycero)porins in the peritoneum, driving structural and functional changes. These data yield novel information on the specific roles of aquaporins in the peritoneal membrane and indicate that fasting improves fluid removal in a mouse model of PD.


Assuntos
Glicerol , Peritônio , Animais , Camundongos , Peritônio/metabolismo , Glicerol/metabolismo , Células Endoteliais/metabolismo , Aquaporina 1/genética , Adipócitos/metabolismo , Água/metabolismo , Camundongos Knockout , Jejum
4.
Eur J Hum Genet ; 27(11): 1731-1737, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31189928

RESUMO

In 1994, a kindred from Yemen was described as the first Jewish family with Machado-Joseph disease (MJD/SCA3), a dominant ataxia caused by the expansion of a (CAG)n above 61 repeats, in ATXN3. MJD is spread worldwide due to an ancient variant of Asian origin (the Joseph lineage). A second, more recent, independent expansion arose in a distinct haplotype (Machado lineage); other possible origins are still under study. We haplotyped 46 MJD patients and relatives, from 6 Israeli Yemenite families, and 100 normal chromosomes from that population, for 30 SNPs spreading 15 kb around the (CAG)n, and 8 STRs and 1 indel in the flanking regions. All six families shared an extended haplotype, showing no variants or recombination after a common origin, but differing in two SNPs (rs12895357 and rs12588287) from the Joseph lineage. To test for a new mutational origin in this population, we searched for the presence of that haplotype in Yemenite-Jewish controls. Only one (1%) normal (CAG)32 allele showed an extended STR-haplotype genetically closer to MJD than normal haplotypes (genetic distance, DA, 0.43 versus 0.53). That normal allele could be explained either by (1) the introduction of both normal and expanded alleles carrying this "Joseph-like" haplotype into the genetic pool of the Yemenite population; or by (2) a large contraction from the expanded CAG range. Based on the lack of STR diversity in MJD Yemenite-Jewish families, and on high frequency of this Joseph-like haplotype among African controls (23.2%), expanded alleles seem to have been introduced very recently (<400 years ago) from Africa.


Assuntos
Ataxina-3/genética , Predisposição Genética para Doença/genética , Doença de Machado-Joseph/genética , Proteínas Repressoras/genética , Adulto , África , Alelos , Povo Asiático/genética , Frequência do Gene , Genótipo , Haplótipos , Humanos , Israel , Judeus , Doença de Machado-Joseph/epidemiologia , Filogenia , Polimorfismo de Nucleotídeo Único , Iêmen , Adulto Jovem
5.
Front Genet ; 10: 38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804982

RESUMO

At least 40 human diseases are associated with repeat expansions; yet, the mutational origin and instability mechanisms remain unknown for most of them. Previously, genetic epidemiology and predisposing backgrounds for the instability of some expanding loci have been studied in different populations through the analysis of diversity flanking the respective pathogenic repeats. Here, we aimed at developing a pipeline to assess disease-associated haplotypes at oligonucleotide repeat loci, combining analysis of single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs). Machado-Joseph disease (MJD/SCA3), the most frequent dominant ataxia worldwide, was used as an example of a detailed procedure. Thus, to identify genetic backgrounds that segregate with expanded/mutated alleles in MJD, we selected a set of 26 SNPs and 7 STRs flanking the causative CAG repeat. Key criteria and steps for this selection are described, and included (1) haplotype blocks minimizing the occurrence of recombination (for SNPs); and (2) match scores to increase potential for polymorphic information content of repetitive sequences found in Tandem Repeats Finder (for STRs). To directly assess SNP haplotypes in phase with MJD expansions, we optimized a strategy with preferential amplification of normal over expanded alleles, in addition to SNP allele-specific amplifications; this allowed the identification of disease-associated SNP haplotypes, even when only the proband is available in a given family. To infer STR haplotypes, we optimized a multiplex PCR, including 7 STRs plus the MJD_CAG repeat, followed by analysis of segregation or the use of the PHASE software. This protocol is a ready-to-use tool to assess MJD haplotypes in different populations. The pipeline designed can be used to assess disease-associated haplotypes in other repeat-expansion diseases. This should be of great utility to study (1) genetic epidemiology (population-of-origin, age and spreading routes of mutations) and (2) mechanisms responsible for de novo expansions, in these neurological diseases; (3) to detect predisposing haplotypes and (4) phenotype modifiers; (5) to help solving cases of apparent homoallelism (two same-size normal alleles) in diagnosis; and (6) to identify the best targets for the development of allele-specific therapies in ethnically diverse patient populations.

6.
Phys Chem Chem Phys ; 20(32): 20927-20942, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30067268

RESUMO

The development of docking algorithms to predict near-native structures of protein:protein complexes from the structure of the isolated monomers is of paramount importance for molecular biology and drug discovery. In this study, we assessed the capacity of the interfacial area of protein:protein complexes and of Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA)-derived properties, to rank docking poses. We used a set of 48 protein:protein complexes, and a total of 67 docking experiments distributed among bound:bound, bound:unbound, and unbound:unbound test cases. The MM-PBSA binding free energy of protein monomers has been shown to be very convenient to predict high-quality structures with a high success rate. In fact, considering solely the top-ranked pose of more than 200 docking solutions of each of 39 protein:protein complexes, the success rate was 77% in the prediction of high-quality poses, or 90% if considering high- or medium-quality poses. If considering high- or medium-quality poses as the top-one prediction, a success rate of 87% was obtained for a scoring scheme based on computational alanine scanning mutagenesis data. Such ranking accuracy highlights the ability of these properties to predict near-native poses in protein:protein docking.


Assuntos
Simulação de Acoplamento Molecular , Proteínas/química , Algoritmos , Sítios de Ligação , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Termodinâmica
7.
J Chem Inf Model ; 57(1): 60-72, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-27936711

RESUMO

Knowing how proteins make stable complexes enables the development of inhibitors to preclude protein-protein (P:P) binding. The identification of the specific interfacial residues that mostly contribute to protein binding, denominated as hot spots, is thus critical. Here, we refine an in silico alanine scanning mutagenesis protocol, based on a residue-dependent dielectric constant version of the Molecular Mechanics/Poisson-Boltzmann Surface Area method. We have used a large data set of structurally diverse P:P complexes to redefine the residue-dependent dielectric constants used in the determination of binding free energies. The accuracy of the method was validated through comparison with experimental data, considering the per-residue P:P binding free energy (ΔΔGbinding) differences upon alanine mutation. Different protocols were tested, i.e., a geometry optimization protocol and three molecular dynamics (MD) protocols: (1) one using explicit water molecules, (2) another with an implicit solvation model, and (3) a third where we have carried out an accelerated MD with explicit water molecules. Using a set of protein dielectric constants (within the range from 1 to 20) we showed that the dielectric constants of 7 for nonpolar and polar residues and 11 for charged residues (and histidine) provide optimal ΔΔGbinding predictions. An overall mean unsigned error (MUE) of 1.4 kcal mol-1 relative to the experiment was achieved in 210 mutations only with geometry optimization, which was further reduced with MD simulations (MUE of 1.1 kcal mol-1 for the MD employing explicit solvent). This recalibrated method allows for a better computational identification of hot spots, avoiding expensive and time-consuming experiments or thermodynamic integration/ free energy perturbation/ uBAR calculations, and will hopefully help new drug discovery campaigns in their quest of searching spots of interest for binding small drug-like molecules at P:P interfaces.


Assuntos
Alanina , Simulação de Dinâmica Molecular , Mutagênese , Proteínas/genética , Proteínas/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas/química , Solventes/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...